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Abstract—The conventional formulation of quasi-steady radially symmetric burning of a pure spherical
monopropellant droplet is re-examined for Lewis—Semenov number unity. The droplet undergoes adiabatic
vaporization and exothermic direct one-step irreversible first-order decompositional burning. The
singular near-equilibrium limit is examined by asymptotic analysis, and the dependence of the vaporiza-
tion rate on the first Damkoéhler number as that number becomes indefinitely large, is sought. In the
near-equilibrium limit the flame is confined to a narrow spherical shell contiguous to the droplet. As
the first Damkdéhler number becomes large without bound, some experimental and theoretical work has
reported that the vaporization rate is proportional to the droplet radius squared, while other work has
suggested that the vaporization rate is linearly proportional to the droplet radius. While such nonunique-
ness does not exist for a plane one-dimensional formulation of decomposition burning, the three-dimen-
sional droplet problem seems to permit nonunique solution. Necessary conditions for realizing each of
the dependencies of the vaporization rate on droplet radius are developed. Both dependencies predict
that the maximum vaporization rate does not occur at chemical equilibrium (in contrast to bipropellant
droplets). Further, in contradiction to previous work, the current analysis indicates that for vaporization
rate to be proportional to the droplet radius squared, the ratio of specific heat of vaporization to specific
heat of combustion must be less than unity. Furthermore, it is this ratio which is important, not the
nondimensionalized droplet or ambient-state enthalpies.

NOMENCLATURE I*, specific heat of vaporization
a*, droplet radius; L, IXh} — h});
B, product gas; n*, net mass transfer rate;
b, stoichiometric coefficient of fuel ; m, m*/4np}a*D*;
B%, frequency factor, pre-exponential r*, pressure;
factor of specific rate constant ; P, P*/(p2D*?/a*?);
cr, heat capacity at constant pressure ; r*, spherical radial coordinate ;
D*, mass transfer coefficient of Fick’s r, r*/a*,
first law; T*, temperature;
D,, first Damkéhler number, a*B%/D*; T, T*/[(h} — h3)/ch];
D,, D, exp(—0*%/T%), T¥, droplet temperature (just below boil-
d, stoichiometric coefficient of product ; ing temperature);
F, fuel ; T%*, representative temperature ;
h¥, h%,  heat of formation of fuel and pro- v*, spherical radial velocity;
duct at some reference condition; v, v*/(D*/a*);
k¥, specific rate constant, €, Dy,
Bf exp (—0*/T*); Ps» gas density;
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P, scaled radial coordinate, (r — 1)/e?;
o*, activation temperature;
6, 0*/[(h¥ — hB)/cy]
Superscript
*, dimensional quantity.

1. INTRODUCTION

FOR MONOPROPELLANT droplets burning under
quasi-steady conditions in a stagnant un-
bounded atmosphere [1] there is agreement
between theory and experiment for small first
Damkdohler number conditions that the vapori-
zation rate m* is linearly proportional to
the droplet radius a* [2-6]. The first Damkohler
similarity parameter D, is the ratio of the rate
of chemical reaction (including appropriate
characterization of the Arrhenius factor) to
the rate of diffusional mass transport. Small
D, implies that decompositional burning occurs
a distance of order a*D, *D, < 1) from the
droplet surface for a first-order reaction [4].

In contrast, large D, implies that decomposi-
tional burning occurs entirely within a small
distance of order a*D; %D, » 1) from the
droplet surface for a first-order reaction [4].

For this case experimental results conflict-

since, for example, Berrére and Moutet [1]
found m* ~ a* for ethyl nitrate, while Rosser
[1, 7] found m* ~ a*2. Theoretical results
conflict also, since Spalding and Jain [2] and
Tarifa, del Notario and Moreno [6] by an
approximate analysis, Rosser and Peskin [7]
by WKB analysis,and Williams [3] by numerical
analysis reported rt* ~ a*? while Fendell [4]
by asymptotic analysis suggested m* ~ a*. This
paper will attempt to consider a resolution to
the theoretical controversy in the large D,
limit and to decide whether such a resolution
explains the experimental discrepancies as well.
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The singular limit of indefinitely fast, irrever-
sible burning has not been elucidated as clearly
for a monopropellant droplet as Burke and
Schumann [8] elucidated the analogous limit
for bipropellant systems with initially unmixed
reactants. Understanding of this limit for mono-
propellants under simplified kinetics may also
provide a guide for the difficult task of numerical
integration under complex kinetics for near-
equilibrium (“stiff”’) conditions.

2. MATHEMATICAL DESCRIPTION

A radially symmetric model of the quasi-
steady adiabatic vaporization and homogeneous
decomposition of a pure spherical mono-
propellant droplet is now formulated. The
simplest physically reasonable case is examined
to permit closed-form solution [9]. The droplet
is immersed in an unbounded expanse of its
product gas. An incompressible, constant-
property flow with a direct first-order one-step
irreversible reaction is adopted :

| J—

bFSdB ki =Brexp(—0%T%. ()

While this form for k¥ will be retained as long
as possible, ultimately only the case k¥ = const.
will be treated in detail Mass, momentum, and
energy are diffused according to the laws of
Fick, Newton, and Fourier, respectively. The
Lewis-Semenov number is taken as unity;
the droplet is uniformly at a temperature TF,
just below the boiling temperature at ambient
pressure P¥* (on the order of a few atmospheres);
mechanical dissipation is negligible.

The governing boundary-value problem for
the so-called eigenvalue m (the mass transfer
rate or Sherwood number) is described by the
following ordinary differential equations and
two-point boundary conditions [10]:

py = const.

(equation of state)

@
&)

(continuity equation)
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(conservation of momentum) (4)

mdY, 14d dy .
" d_rF -33 (r2 Tdle = — D, Ypexp(—6/T) (conservation of fuel) 5)
mdIl 1d{,dT .
T2 2 (Il = — f
2% " Par <r dr) D, Yeexp(—6/T) (conservation of energy) 6)
Atr-sow: T-T, Y.—0 )
Atr=1: T=T, (8)
dT . . ..
T = mL (adiabatic vaporization) )
dy, . ..
T - m(Yy — 1) (pure fuel condition). (10)

An identical formulation would hold for a
compressible gas if one invoked isobaric flow
and linear variation of the mass-transfer co-
efficient with temperature.

A Shvab-Zeldovich integral of the governing
set is given by adding equations (5) and (6), inte-
grating and using (7)~(10):

Yo+ T=a+ Bexp(—ri/r)
a=T,+1-L, B=T,—-T,—L—-1.

(11)
(12)

By introducing equation (11) in equation (6)
and by invoking equations (7)9), one may
form a boundary-value problem for the tem-
perature alone. Johnson and Nachbar [11, 12]
have demonstrated that for a given value of T,
the analogous one-dimensional boundary-value
problem has a solution and the eigenvalue is
uniquely specified. Because nonuniqueness is
important to the subsequent development in
this paper, the differences from the J-N problem
are now discussed. First, as D; — oo the reaction
rate expression is undefined and additional
physical information must be provided to
obtain a well-formulated problem in this singular
limit. The information adopted here is either
m* ~ a* or m* ~ a*?, both of which seem
worthy of study. Second, for any D, the Johnson—
Nachbar proof of uniqueness is based crucially

on the plane one-dimensional nature of their
formulation ; for example, their system permits
no heat loss to the environment. For a three-
dimensional formulation, even with radial sym-
metry, the J-N formulation does not in general
apply. The more complicated nature of the
Shvab-Zeldovich integral for three-dimensional
problems [B in equation (11) is effectively
zero in a plane one-dimensional problem]
acknowledges that there may occur heat loss
to the ambient gas. When such heat loss occurs,
the solution may be nonunique.

3. APPROXIMATE SOLUTION

The boundary-value problem in general re-
quires numerical solution owing to the trans-
cendental nonlinearity of the Arrhenius factor.
For analytic treatment the problem will be
linearized by approximating the Arrhenius
factor exp (— 6/T,) where T, is a chosen constant.
Perhaps the most representative choice for T,
is the maximum gas temperature expected
anywhere in the flow field. Such modelling
ought to give a qualitatively correct answer for a
gross property like the vaporization rate ri.
Extensive numerical treatment of the exact
equation may not be warranted in view of the
crude state of knowledge of the chemical
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kinetics of most monopropellants in general
and activation temperatures in particular, and
also in view of the fact that the almost universally
adopted one-step kinetics does not really des-
cribe the actual multistep reaction. An effective
Damkéohler number D, is now defined :

D, =D, exp(—6/T).

The case of interest here is D, > 1; this situation
arises when 0/T, is not too large and D, > 1.
Clearly a low-activation-energy mono-propel-
lant in conjunction with a hot environmental
temperature is under consideration.

Despite the resulting linearity of equation (5),
now approximated in the form

zdz+2 - D,r*} Y, =0, (13
r'z ("—m)'d—r— 1) =0, (13)
a tractable series solution is not readily carried
out [4]. Here asymptotic solution for D, » 1
will be sought by invoking boundary-layer
theory. On the basis of experimental results [6],
qualitative examination of equation (13) [4], or
or previous theories [1] it may be anticipated
that the burning zone is a narrow region con-
tiguous to the droplet surface. In this region
both reaction and diffusion must be present;
boundary-layer theory suggests reformulation
in terms of a scaled independent variable:

r—1

p="o  e=0). (4
Hence, equations (13), (7), and (10) yield :
242y, )
(1+s*p> dp2F+ [2—m+235,ﬂ
dy,
x e*d—pf — (1 +epPY=0 (15
Yi(p > 0) - 0’9-?150_) = etm[YH0) — 1]. (16)

The somewhat planar nature of a flame zone
near the surface (to lowest order) is revealed by
this independent-variable transformation. The
thickness of the reaction zone has been character-
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ized as O(D7 %), and thus inversely proportional
to the droplet radius. As D; — oo, the flame
zone collapses to a spherical shell coincident
with the droplet surface.

If m* ~ a* to lowest order, m = O(1) to
lowest order. Such a choice would treat con-
vective transport [the first-derivative terms in
equation (15)] as a higher-order effect. Such a
model recalls the treatment of bipropellant
droplet burning adopted by physicochemical
hydrodynamicists under the dilute diffusion-
flame conditions. It also recalls, perhaps more
relevantly, the lowest approximation to the
flame zone in near-equilibrium, near-irreversible
burning of bipropellant droplets according to
singular perturbation theory [13]. On the other
hand, if m* ~ a*? to lowest order, m = O(D,?).
Under this much greater rate of evaporative
mass transfer, convective mass transport is just
as important as both diffusive mass transport
and chemical reaction. The next task is to
determine whether equations (15) and (16)
admit physically reasonable asymptotic ex-
pansions of either or both of these models.
While of course such nonexistence cannot be
established, no plausible asymptotic expansion
has been found for the case m* ~ a*’,1 < ¢ < 2
as¢ — 0.

4. ASYMPTOTIC SOLUTIONS
For the m* ~ a* solution one adopts [4]

Ye(r,e) = et Yr(p) + eYe,(0) + e¥Yp () + ... (17)
me) = gy + etmy + etmy + ... (18)
Substitution of equations (17) and (18) into

equations (15) and (16) leads to a sequence of
problems, the first two of which are:

a7 Y, =0,

Y, (p = 00) =0, (19)
dYe0) _ .

dp °
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or
YFO = mo e-” (20)

and

d?y, N e -

dpgl — Y, = (2 —mp)ymge™",

Y (p = 0) = 0, (21)

dYz (0) . .

_(;p— = 1ty Yp(0) — m,
or

A [
~To - mo)p] er (22)

Equations (20), (22), and (9)(12) yield
it
-1

A physical interpretation of these results is
now given. For the usual case of specific heat of
combustion exceeding the specific heat of
vaporization (L < 1), the ambient temperature
T,, must be less than the droplet temperature
T, for a quasi-steady solution to exist. As
T.1 T,, the mass-transfer rate vanishes. The
reason for this restriction is that the current
model demands that an intense exothermic
reaction be occurring near the droplet surface,
but that the rate of vaporization be fixed in
magnitude at no more than order unity. Such a
model can only be achieved in the quasi-steady
state if the chemically released heat is permitted
to flow into a sink at infinity. The requirement
B <0(@e., T, < T, for L < 1)insures that heat
is lost to the environment. If T, T T, there is no
tendency for heat to flow outward, and no
solution can exist. For the rare case L > 1,
T, > T,is required for a steady state; since the
reactiondoesnot yield sufficientheat,theambient
environment must maintain the required heat
flux to sustain vaporization.

For L < 1,reducing D, (increasing g)increases

o = W [BAL — D}ty = — + (23)
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m; thus, unlike the analogous limit in bipro-
pellant droplets with initially unmixed reactants
[13], in monopropellants the maximum vapori-
zation rate does not always occur for the limit
of equilibrium irreversible kinetics, It is of course
quite possible for m for intermediate D, not to
lie within the vaporization rate bounds set
by thefrozen (D, — 0)and equilibrium (D; — o)
limits. It is emphasized that the increase of m
with ¢ for L < 1 holds only vanishingly small
(though finite) ¢; in fact, it has been explicitly
shown for large ¢ that i decreases with increasing
¢ in [4]. The reason for the anomalous increase
seems to be that in the limit ¢ — 0 an exponen-
tially small amount of fuel is convected and
diffused through the very thin reaction zone
fast enough to be unreacted. As the reaction
rate is very slightly decreased, the reaction
zone remains of &* thickness in order of magni-
tude, but is slightly increased in width (cf.
Equations (20) and (22)). The increase is
just enough to react some of the fuel that to
lowest order escaped combustion at a given
radial position. Of course, thickening the reac-
tion zone for other than very small e would have a
detrimental effect on the vaporization rate. For
L > 1, decreasing the reaction rate is harmful to
the vaporization rate ; mis found by equation (23)
to decrease as ¢ increases.

Finally, it is noted that adopting m* ~ a*
implies for a first-order reaction that the gas-
phase mass fraction Y; vanishes as D% as
D, —» co—thisisindicative of singular behavior.t

For the rm* ~ a*? solution one adopts

YAr,6) = Yr(p) + 2 Ye,(0) + o(e?)  (24)
m(e) = ¢ty + my + o(l) 25
Dimensionally equation (25) states that

ni* ~ a*3(k*)*; this relation, found by Williams
[3] after extensive approximations, is here an

t If T¥ is set equal to T¥, the results for sy and Yp,
hold for the transcendentally nonlinear Arrhenius kinetics
as well. However, while ¥ and i1, could also be found
in such a case, the expressions would be far more complex
than those given in equations (22) and (23).
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immediate result of simple dimensional argu-
ments. In contrast to equations (17) and (18)
the vaporization rate now becomes large without
bonds as equilibrium, irreversible conditions are
approached. This is indicative of singular
behavior in this alternative expansion. Further-
more, the mass fraction abruptly changes from
an order-unity quantity to an exponentially
small one as the flame zone (of thickness
O(e?) as ¢ — 0) collapses. In the limit the flame
zone is analogous to the vortex sheet to which a
viscous boundary layer collapses as the Reynolds
number becomes unboundedly large. Whereas
the tangential velocity discontinuously jumps to
zero across the vortex sheet, across the flame
sheet in the & — 0 limit the fuel mass fraction
discontinuously jumps to zero.

Substitution of equations (24) and (25) in
equations (15) and (16) yields with the aid of
equations (9)+(12) the following problem to
lowest order (identical to the analogous one-
dimensional problem):

d’Y dys
e — ° — =0 2
dp2 0 dp YI"o ( 6)
subject to
Y;.O(O) =1- L’w
dp
= 1o Y¢,(0) — 1], Y op > 00) > 0. (27)

From this formulation it is clear that L < 1 [so
Y¢,(0) > 0], or no solution of the type postulated
can exist. Physically, unless the heat of vaporiza-
tion is less than the heat of combustion, no
intense vaporization can be expected. Since
T, and T, do not enter the formulation (except
to characterize the magnitude of D,), the vapori-
zation rate becomes relatively independent of
these quantities; i is a function of L only. The
dependence on L and independence of T, and T,
is in direct contrast to the model of Spalding and
Jain, as interpreted by Williams [1]. In cases of
intense vaporization the roles of impressed
thermal gradients of moderate magnitude have
negligible effect (according to the current model)
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compared with the heat generation by reaction
and absorbed by vaporization. From equations
(26) and (27)

Yefp) = (1 = L)exp {% [1-(+ 4/m%)*]p}
(28)
where

o = @9
For my > 0, 0 < L < 1—the specific heat of
combustion must be greater than the heat of
vaporization. It has formally been shown that the
case m* ~ a*? implies that the temperature
rises to the adiabatic flame temperatures in a
distance roughly &* off the droplet, and main-
tains the adiabatic flame temperature until
distances O(e™%).

The first perturbation to equations (28) and
(29) is governed by

d2Y,, . dY, Yy,
ar "™ T T
x [y — 2(1 + mep)]  (30)
where
D L% =0,
Y (p - 0) =0 (31)

Consideration of this boundary-value problem
reveals that m, > 0—thus again it is found that
the vaporization rate for indefinitely fast, irrever-
sible kinetics is not the maximum rate possible.
Substitution of equation (28) in equation (30)
gives in view of (31)

Y, = (Hp + Jp?)

exp {2001 (1 + aidple} 32

t If the Arrhenius factor had been retained, even the
lowest-order solution would have been intractable because
of the nonlinearities. However, one can show that while
i1, might depend on T, in such a case, m, remains indepen-
dent of T,,.
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where

1 — Ly3L}
= 43

1-L\ (. 4
=L(m> (’"‘H—) G4
1-L
2<1+L>

Thus as ¢ — 0 either m* ~ a* or m* ~ a*?
scems to be compatible with an asymptotic
expansion that is both physically plausible and
capable of extension to higher order. The only
satisfactory stability analysis would be to
ascertain what physically realizable initial con-
ditions (if any) would lead to each of the two
quasi-steady configurations; this quite difficult
unsteady analysis will not be undertaken here.

(35)

5. COMPARISON WITH EXPERIMENTS
AND SUGGESTED EXTENSIONS

For the first-order reaction examined in this
paper one may conclude the following.

MDA quas1-steady solution theoretically exists
for D, » o in which m* ~ a* provided
T* > T* when L < 1. Barrére and Moutel [1]
are the only experimentalists to report m* ~ a*
for other than D, — 0, but their results have been
challenged on several grounds [5]. Most experi-
mentalists find it necessary to introduce an
oxidant into the environment to sustain the
quasi-steady monopropellant burning [14]. The
oxidant is chemically active with the products of
the decompositional burning so a bipropellant
flame [15] exists outside the monopropellant
flame. Naturally the current theory for an inert
atmosphere cannot be rigorously applied to such
an experiment. Naturally, also, the hot bi-
propellant flame violates the condition
T* > T*. Since spherical droplets can be
achieved to only a certain size, physical realiza-
tion of the D, » 1 condition would require a
very large porous sphere with baffles to inhibit
internal circulation currents; the gaseous atmo-
sphere would have to be held at a high pressure.
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Perhaps the m* ~ a* result, which has never
been experimentally observed in the near-
equilibrium limit, might then be noted.

A quas1-steady solution theoretically exists
for D, » 0 in which m* ~ a*? provided
L < 1. This solution for ri (equations (25), (29),
and (35)) indicates m depends more on L than
on T, and T, Many experimentalists report
m* ~ a*? for D, of order unity or larger. Some
caution is warranted when applying the current
theory to these experiments. Again, these experi-
mentalists often resort to oxidant-containing
ambient environments. Furthermore, often they
use simple (“‘eyeball”’) judgements as to when a
quasi-steady state was established [7]. It should
be noted that in the experiments of Faeth,
Karhan and Yanyecic [5] with actual droplets
the quasi-steady state took longer and longer
to achieve as D, was increased. During the
short time it was achieved for large D,, 1 ~ a*2
was observed. Sometimes it appears virtually
no quasi-steady combustion was realized before
burnout. Failure to attain in all cases a quasi-
steady burning is confirmed by Lawver [14],
who also used droplets.

(3) If one wishes to maximize ri, there is some-
times little incentive for as large a forward rate as
possible (while suppressing the reverse reaction)
for quasi-steady burning of monopropellants,
because m is not necessarily a maximum for
D, — .

(4) The monopropellant flames for D, — oo
lies contiguous to the droplet and is of thickness
O(D7 *). There seems just as great a need as ever
for a theory of sequential monopropellant and
bipropellant flames—a need previously empha-
sized by Williams [1] in discussing decomposi-
tional burning in the presence of species chemi-
cally active with the product gases.

Finally it is conjectured that the difficulty of
establishing quasi-steady purely decomposi-
tional flame in constant-diameter porous-sphere
experiments at any finite Damkohler number
may be owing to a failure to preheat the liquid
fuel to its boiling temperature. Provision for pre-
heating is not quoted in the apparatus diagram of
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[7]; such an omission would render the experi-
ment completely unsuited for the quasi-steady
theory with adiabatic vaporization which the
authors of [7] themselves present. If the liquid
were preheated before introduction into the
porous sphere, the present conjecture is that a
decompositional flame would be sustained for
some finite Damkd&hler numbers.
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Résumé—La formulation classique de la combustion quasi-stationnaire 4 symétrie radiale d’une gouttelette
sphérique de monergol pur est réexaminée pour un nombre de Lewis—Semenov égal 4 'unité. La gouttelette
subit une vaporisation adiabatique et une combustion de décomposition du premier ordre irréversible,
en une étape, directe et exothermique. La limite singuliére prés de I’équilibre est examinée par I’analyse
asymptotique et 1’on a cherché la dépendance de la vitesse de vaporisation sur le premier nombre de
Damkdhler lorsque ce nombre croit indéfiniment. Dans la limite prés de I’équilibre, la flamme est confinée
dans une enveloppe sphérique voisine de la gouttelette. Lorsque le nombre de Damkdhler croit sans
limite, un certain travail expérimental et théoretique a signalé que la vitesse de vaporisation est proportionn-
elle au carré du rayon de la gouttelette, tandis qu’un autre a suggéré que la vitesse de vaporisation est
proportionnelle au rayon de la gouttelette. Alors qu’une telle non-unicité n’existe pas pour une formulation
unidimensionnelle plane de la combustion par décomposition, le probléme tridimensionnel de la goutte
permet une solution non unique. Les conditions nécessaires pour réaliser chacune des dépendances de la
vitesse de vaporisation en fonction du rayon de la gouttelette sont exposées. Ces deux dépendances prédisent
que le maximum de la vitesse de vaporisation ne se produit pas a 1’équilibre chimique (en contraste avec
les gouttelettes de diergol). En outre, en contradiction avec un travail prédédent, I’analyse actuelle indique
que pour une vitesse de vaporisation proportionnelle au carré du rayon de la gouttelette, le rapport de la
chaleur spécifique de vaporisation a la chaleur spécifique de combustion est important, mais non les
enthalpies mises sans dimensions de la gouttelette ou de ’ambiance. La stabilité de chaque dépendance
du rayon de la gouttelette est examinée en pensant & un appareil  sphére poreuse de diamétre constant, et
les résultats semblent étre compatibles avec toutes les observations expérimentales publiées.
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Zusammenfassung—Der konventionelle Ansatz fir quasi-stationiire radialsymmetrische Verbrennung
eines reinen kugelformigen Troépfchens eines Einkomponententreibstoffs wurde fiir eine Lewis—Semenov—
Zahl 1 von neuem untersucht. Das Tropfchen erfihrt eine adiabate Verdampfung und eine exotherme
direkte, in einem Schritt erfolgende, irreversible Abbrandreaktion erster Ordnung. Der besondere Grenz-
bereich in der Nihe des Gleichgewichts wurde mit einer asymptotischen Theorie untersucht, und es wurde
die Abhiangigkeit der Verdampfungsrate von der ersten Damkohler-Zahl gesucht, wenn diese Zahl
unendlich gross wird. Im Grenzbereich in der Néhe des Gleichgewichts ist die Flamme auf eine schmale
Kugelschale, die an das Tropfchen angrenzt, beschrankt. Fiir den Fall, dass die erste Damk&hler-Zahl
unbegrenzt gross wird, wurde einerseits in einer experimentellen und theoretischen Arbeit berichtet, dass
die Verdampfungsrate proportional dem Quadrat des Tropfenradius ist, wogegen in einer anderen Arbeit
angenommen war, dass die Verdampfungsrate direkt proportional dem Tropfenradius ist. Wéhrend fiir
den ebenen eindimensionalen Ansatz der Abbrandreaktion derartige Widerspriiche nicht auftreten, lisst
das Problem des dreidimensionalen Tropfchens eine nicht eindeutige Losung zu. Es sind die notwendigen
Bedingungen fiir die Verwirklichung jedes der beiden Gesetze fiir die Abhéngigkeit der Verdampfungsrate
vom Tropfeuradius dargestellt. Beide Abhéngigkeitsgesetze sagen voraus, dass die maximale Verdampfungs-
rate nicht beim chemischen Gleichgewicht auftritt (im Gegensatz zu den Trépfchen eines Zweikomponenten-
treibstoffs). Weiterhin zeigt -im Gegensatz zu fritheren Arbeiten- die gebrduchliche Analyse, dass dann,
wenn die Verdampfungsrate proportional dem Quadrat des Radius ist, das Verhéltnis von spezifischer
Verdampfungswirme zur spezifischen Verbrennungswirme von Bedeutung ist, und nicht die dimensions-
los gemachten Tropfen, oder Umgebungsenthalpien. Die Stabilitédt der beiden Abhingigkeitsgesetze vom
Tropfenradius wurde mit einem konstanten Durchmesser mit Beriicksichtigung des Mechanismus einer
pordsen Kugel iiberpriift und die Ergebnisse erscheinen mit allen dargelegten experimentellen Beo-
bachtungen vertraglich.

AnHoranua—PaccmarpuBaerca 00HMHaA (OpPMYIMPOBKA YCTAHOBHBLIErOCH PafMAIbHO-
CHMMETPHYHOTO TOPEHUA YMCTO cepuyeckoll OHOKOMIIOHEHTHON KalaK A yuciaa Jlpouca-
CemeHoBa, paBHOro efuHuue. Hamna mopxBepraercA afauaGaTU4ecKOMY HCIOAPEHHIO M He-
NOCPEeACTBEHHOMY SK30TEPMHUECKOMY ONHOCTYTEHYaTOMY HeoGpaTHMOMY ropenuio. Hsasu-
PABHOBECHEIH IPOIIeCC HCCIIEAYeTCA ¢ MOMOMIbIO ACUMITOTHYECKMX MeTo0B. Halifena saBucu-
MOCTb MHTEHCHMBHOCTH WCIIapeHHA oT yucia Jlamkérepa, KOTAa OHO CTAaHOBUTCA GECKOHEYHO
GompmuM. B KBasu-paBHOBECHOM IIpoIlecce IINIAaMS OTPAHMYMBAETCA Y3KOH chepuyeckoir
oGomoukolt, npuieraiome# k kanage. COrJacHO B3KCIEPUMEHTAJNLHEIM M TeOpPeTHYECKHM
NAHHKM Ipu GoablUIMX YucIax JaMkéinepa CKOPOCTh HCIIAPEHNA HPONOPIMOHAIBHA KBAfpaTy
paguyca Kammu. OJHAKo, B APYrux paboTax NpeJIoJIaraeTcd, 4YTO CKOPOCTh MCIApeHHMA
IMHEHHO NPONMOPLUMOHAIBHA pajguycy Kaniu. Ecau Her Takolf HEOZHO3HAYHOCTH AJIA MJIOC-
KOT'O OZHOMEPHOTO TOPEHHA B YCJIOBUAX DasjOkeHUA, TO TPeXMEPHYIO 3afady [JA KaIlu
MOKHO PelINTh HeOJHO3HAYHO, B paboTe aHAMMBUPYIOTCSA BABUCMMOCTH CKOPOCTH MCIIADEHHA
oT paguyca kamau. Ofe 3aBMCUMOCTH HPEJCKA3HBAIOT, YTO MAKCHMAJIBHAA CKOPOCTh MCTApe-
HEA He HaOJIOfaeTCA IPK XUMHYECKOM PABHOBECHH (B NPOTUBOMOJIOMHOCTD CIy4aio ABYX-
KOMIOHEeHTHHIX Kamesb). Hacrodgmu#t aHaiaus NOKaspBaeT, YTO RJIA CKOPOCTH HCIApeHuf,
NPONMOPUMOHANBHOM KBAJPATy PajMyca KAIM, Ba<HHM (AKTOPOM ABJIAETCA OTHOUICHHE
YAEIbHON TEIIOTH MCTIAPeHUsA K y/edbHOMK TeNIIOTe TOPeHNs, a He GeapasMepHas dHTAIbIHA
KAIJIM WJIM COCTOSHME OKPYrKaloulell cpefsl. OKCIepUMeHTH IPOBOMUIIMCE C KAINIAMY OfHHA-
KOBOT'0 [HAMeTPa NpPU MPOYMX PABHEIX YCIOBMAX. PeaylbTaTH MCCIEZOBAHUA COTIACYIOTCH
¢ ony6aMKOBAHHBIMM SKCIIEPUMEHTANbHEIMY NaHHBIMMU,
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