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Ahatrae-The conventional formulation of quasi-steady radially symmetric burning of a pure spherical 
monopropellant droplet is re-examined for Lewis-Semenov number unity. The droplet undergoes adiabatic 
vaporization and exothermic direct one-step irreversible fust-order decompositional burning. The 
singular near-equilibrium limit is examined by asymptotic analysis, and the dependence of the vaporixa- 
tion rate on the first Damkohler number as that number becomes indefinitely large, is sought. In the 
near-equilibrium limit the flame is confined to a narrow spherical shell contiguous to the droplet. As 
the fust Damkiihier number becomes large without bound, some experimental and theoretical work has 
reported that the vaporization rate is proportional to the droplet radius squared while other work has 
suggested that the vaporization rate is linearly proportional to the droplet radius. While such nonunique- 
ness does not exist for a plane one-dimensional formulation of decomposition burning, the three-dimen- 
sional droplet problem seems to permit nonunique solution. Necessary conditions for realizing each of 
the dependencies of the vaporization rate on droplet radius are developed. Both dependencies predict 
that the maximum vaporization rate does not occur at chemical equilibrium (in contrast to bipropellant 
droplets). Further, in contradiction to previous work, the current analysis indicates that for vaporization 
rate to be proportional to the droplet radius squared, the ratio of specific heat of vaporization to specific 
heat of combustion must be less than unity. Furthermore, it is this ratio which is important, not the 

nondimensionalixed droplet or ambient-state enthalpies. 
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NOMENCLATURE J? 

droplet radius ; L,’ 
product gas ; ?h*, 
stoichiometric coefficient of fuel ; 6 
frequency factor, pre-exponential p*, 
factor of specific rate constant ; P9 
heat capacity at constant pressure ; r*, 
mass transfer coefficient of Fick’s r, 
first law ; T*, 
first Damkiihler number, a*2Bf/D* ; T, 
D, exp(-0*/T:); T:, 
stoichiometric coefficient of product ; 
fuel ; T:, 
heat of formation of fuel and pro- u*, 
duct at some reference condition ; 0, 
specific rate constant, 6, 

Bf! exp (-0*/T*); p:, 
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specific heat of vaporization of fuel ; 
L*(h$ - h;); 
net mass transfer rate ; 
riz*/4xp:a*D* ; 
pressure ; 
p*/(p:D*2/a*2); 
spherical radial coordinate ; 
,*/a* ; 
temperature ; 

T*lPfr - Wc;]; 
droplet temperature (just below boil- 
ing temperature) ; 
representative temperature ; 
spherical radial velocity ; 
v*/(D*/a*); 

(m-1 ; 
gas density ; 
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P> scaled radial coordinate, (I - 1)/c*; 

e*, activation temperature ; 

8, e*m: - hw,*i. 

Superscript 
* , dimensional quantity. 

1. INTRODUCTION 

FOR MONOPROPELLANT droplets burning under 
quasi-steady conditions in a stagnant un- 
bounded atmosphere [l] there is agreement 
between theory and experiment for small first 
Damkiihler number conditions that the vapori- 
zation rate lit* is linearly proportional to 
the droplet radius a* [2d]. The first Damkohler 
similarity parameter B, is the ratio of the rate 
of chemical reaction (including appropriate 
characterization of the Arrhenius factor) to 
the rate of diffusional mass transport. Small 
6, implies that decompositional burning occurs 
a distance of order ~*ij,-~(Di 4 1) from the 
droplet surface for a first-order reaction [4]. 

The singular limit of indefinitely fast, irrever- 
sible burning has not been elucidated as clearly 
for a monopropellant droplet as Burke and 
Schumann [8] elucidated the analogous limit 
for bipropellant systems with initially unmixed 
reactants. Understanding of this limit for mono- 
propellants under simplified kinetics may also 
provide a guide for the difficult task of numerical 
integration under complex kinetics for near- 
equilibrium (“stiff ‘) conditions. 

2. MATHEMATICAL DESCRIPTION 

In contrast, large b, implies that decomposi- 
tional burning occurs entirely within a small 
distance of order a*fi, -+(Or $ 1) from the 
droplet surface for a first-order reaction [4]. 
For this case experimental results conflict 
since, for example, Berrere and Moutet [l] 
found riz* w a* for ethyl nitrate, while Rosser 
[l, 73 found ti* N a*‘. Theoretical results 
conflict also, since Spalding and Jain [2] and 
Tarifa, de1 Notario and Moreno [6] by an 
approximate analysis, Rosser and Peskin [7] 
by WKB analysis, and Williams [3] by numerical 
analysis reported ti* N a*’ while Fendell [4] 
by asymptotic analysis suggested lit* N a*. This 
paper will attempt to consider a resolution to 
the theoretical controversy in the large 8, 
limit and to decide whether such a resolution 
explains the experimental discrepancies as well. 

A radially symmetric model of the quasi- 
steady adiabatic vaporization and homogeneous 
decomposition of a pure spherical mono- 
propellant droplet is now formulated. The 
simplest physically reasonable case is examined 
to permit closed-form solution [9]. The droplet 
is immersed in an unbounded expanse of its 
product gas. An incompressible, constant- 
property flow with a direct first-order one-step 
irreversible reaction is adopted : 

bFk+fdB kf = By exp(-8*/T*). (1) 

While this form for kf will be retained as long 
as possible, ultimately only the case k; = const. 
will be treated in detaiL Mass, momentum, and 
energy are diffused according to the laws of 
Fick, Newton, and Fourier, respectively. The 
Lewis-Semenov number is taken as unity; 
the droplet is uniformly at a temperature Tf, 
just below the boiling temperature at ambient 
pressure P*, (on the order of a few atmospheres); 
mechanical dissipation is negligible. 

The governing boundary-value problem for 
the so-called eigenvalue Gr (the mass transfer 
rate or Sherwood number) is described by the 
following ordinary differential equations and 
two-point boundary conditions [lo] : 

pe* = const. 
. 

v=rn 
l-2 

(equation of state) 

(continuity equation) 

(2) 

(3) 
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* 2 

P=P,- y 0 (conservation of momentum) (4) 

D i Yp exp (-B/T) (conservation of fuel) 

= D, YPexp(-B/T) (conservation of energy) (6) 

At r + co: T+ T,, Yp --) 0 

Atr=l: T=T, 

FE = hL 
dr 

dYr - = fi(Y, - 1) 
dr 

(adiabatic vaporization) 

(pure fuel condition). 

(7) 

(8) 

(9) 

(10) 

An identical formulation would hold for a 
compressible gas if one invoked isobaric flow 
and linear variation of the mass-transfer co- 
efficient with temperature. 

A Shvab-Zeldovich integral of the governing 
set is given by adding equations (5) and (6), inte- 
grating and using (7)-(10): 

YF + T= a + /?exp(-h/r) (11) 

a = T, + 1 - L, /I = T, - T, - L - 1. (12) 

By introducing equation (11) in equation (6) 
and by invoking equations (7)-(9), one may 
form a boundary-value problem for the tem- 
perature alone. Johnson and Nachbar [ll, 123 
have demonstrated that for a given value of T,, 
the analogous one-dimensional boundary-value 
problem has a solution and the eigenvalue is 
uniquely specified. Because nonuniqueness is 
important to the subsequent development in 
this paper, the differences from the J-N problem 
are now discussed. First, as D, + co the reaction 
rate expression is undefined and additional 
physical information must be provided to 
obtain a well-formulated problem in this singular 
limit. The information adopted here is either 
riz* N a* or ti* N Use, both of which seem 
worthy of study. Second, for any D 1 the Johnson- 
Nachbar proof of uniqueness is based crucially 

on the plane one-dimensional nature of their 
formulation ; for example, their system permits 
no heat loss to the environment. For a three- 
dimensional formulation, even with radial sym- 
metry, the J-N formulation does not in general 
apply. The more complicated nature of the 
Shvab-Zeldovich integral for three-dimensional 
problems [/I in equation (11) is effectively 
zero in a plane one-dimensional problem] 
acknowledges that there may occur heat loss 
to the ambient gas. When such heat loss occurs, 
the solution may be nonunique. 

3. APPROXIMATE SOLUTION 

The boundary-value problem in general re- 
quires numerical solution owing to the trans- 
cendental nonlinearity of the Arrhenius factor. 
For analytic treatment the problem will be 
linearized by approximating the Arrhenius 
factor exp (-O/T,) where T, is a chosen constant. 
Perhaps the most representative choice for T, 
is the maximum gas temperature expected 
anywhere in the flow field. Such modelling 
ought to give a qualitatively correct answer for a 
gross property like the vaporization rate liz. 
Extensive numerical treatment of the exact 
equation may not be warranted in view of the 
crude state of knowledge of the chemical 
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kinetics of most monopropellants in general 
and activation temperatures in particular, and 
also in view of the fact that the almost universally 
adopted one-step kinetics does not really des- 
cribe the actual multistep reaction. An effective 
Damkiihler number D1 is now defined : 

nl = D, exp(-8/T,). 

The case of interest here is n1 B 1; this situation 
arises when O/T, is not too large and D, % 1. 
Clearly a low-activation-energy mono-propel- 
lant in conjunction with a hot environmental 
temperature is under consideration. 

Despite the resulting linearity of equation (5), 
now approximated in the form 

( rZ $ + (2r - ti) $ - &r2 
> 

Y, = 0, (13) 

a tractable series solution is not readily carried 
out [4]. Here asymptotic solution for D1 $ 1 
will be sought by invoking boundary-layer 
theory. On the basis of experimental results [6], 
qualitative examination of equation (13) [4], or 
or previous theories [l] it may be anticipated 
that the burning zone is a narrow region con- 
tiguous to the droplet surface. In this region 
both reaction and diffusion must be present; 
boundary-layer theory suggests reformulation 
in terms of a scaled independent variable : 

r-l 
P=- &f 

& = (&)-‘. (14) 

Hence, equations (13), (7), and (10) yield : 

x &~-(I +&+p)2YF=o 
dp 

(15) 

Y&l-, co)-+O, F = &[YF(O) - 11. (16) 

The somewhat planar nature of a flame zone 
near the surface (to lowest order) is revealed by 
this independent-variable transformation. The 
thickness of the reaction zone has been character- 

ized as O(D; *), and thus inversely proportional 
to the droplet radius. As B, + co, the flame 
zone collapses to a spherical shell coincident 
with the droplet surface. 

If ril* N a* to lowest order, ti = O(1) to 
lowest order. Such a choice would treat con- 
vective transport [the first-derivative terms in 
equation (15)] as a higher-order effect. Such a 
model recalls the treatment of bipropellant 
droplet burning adopted by physicochemical 
hydrodynamicists under the dilute diffusion- 
flame conditions. It also recalls, perhaps more 
relevantly, the lowest approximation to the 
flame zone in near-equilibrium, near-irreversible 
burning of bipropellant droplets according to 
singular perturbation theory [13]. On the other 
hand, if ti* w Use to lowest order, ti = O(b,*). 
Under this much greater rate of evaporative 
mass transfer, convective mass transport is just 
as important as both diffusive mass transport 
and chemical reaction. The next task is to 
determine whether equations (15) and (16) 
admit physically reasonable asymptotic ex- 
pansions of either or both of these models. 
While of course such nonexistence cannot be 
established, no plausible asymptotic expansion 
has been found for the case liz* N a*‘, 1 < c < 2 
as E + 0. 

4. ASYMPTOTIC SOLUTIONS 

For the riP - a* solution one adopts [4] 

YF(r,s) = s%&) + EYF,@) + E+YF,(p) + . . . (17) 

h(E) = & + &*ljli + &%il, + . . . (18) 

Substitution of equations (17) and (18) into 
equations (15) and (16) leads to a sequence of 
problems, the first two of which are : 

d2Y,, - - YFo = 0, 
dp2 1 
Go (P + co) --f 0, 
dY,,(O) . 
dp= -m 0 
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or 

and 

YFO = lit, eep 

d2r,, 

~ = tioYp,(0) - ti, 
dp I 

or 

z - YF, = (2 - tiito) tie ewP, 
dp 

r,,(P + 00) + 0, 

d%,(O) 

YF, = 
K 

ti; 
ti, - lit, - 2 

) 

- ?(2 - ritO)p eep. 1 
Equations (20), (22), and (9)-(12) yield 

ti, = ln [/?/(L - l)], lit, = - A. 

(20) 

(21) 

(22) 

(23) 

A physical interpretation of these results is 
now given. For the usual case of specific heat of 
combustion exceeding the specific heat of 
vaporization (L < l), the ambient temperature 
T, must be less than the droplet temperature 
T, for a quasi-steady solution to exist. As 
T, t T, the mass-transfer rate vanishes. The 
reason for this restriction is that the current 
model demands that an intense exothermic 
reaction be occurring near the droplet surface, 
but that the rate of vaporization be fixed in 
magnitude at no more than order unity. Such a 
model can only be achieved in the quasi-steady 
state if the chemically released heat is permitted 
to flow into a sink at infinity. The requirement 
/I < 0 (i.e., T, < T, for L < 1) insures that heat 
is lost to the environment. If T, t T, there is no 
tendency for heat to flow outward, and no 
solution can exist. For the rare case L > 1, 
T, > T, is required for a steady state ; since the 
reactiondoesnot yield sufI?cient heat, the ambient 
environment must maintain the required heat 
flux to sustain vaporization. 

For L c 1, reducing iI (increasing E) increases 

rft ; thus, unlike the analogous limit in bipro- 
pellant droplets with initially unmixed reactants 
[ 131, in monopropellants the maximum vapori- 
zation rate does not always occur for the limit 
of equilibrium irreversible kinetics. It is of course 
quite possible for rfr for intermediate D1 not to 
lie within the vaporization rate bounds set 
by thefrozen@, + O)andequilibrium(6, + co) 
limits. It is emphasized that the increase of ti 
with E for L < 1 holds only vanishingly small 
(though finite) E ; in fact, it has been explicitly 
shown for large E that ti decreases with increasing 
E in [4]. The reason for the anomalous increase 
seems to be that in the limit E + 0 an exponen- 
tially small amount of fuel is convected and 
diffused through the very thin reaction zone 
fast enough to be unreacted. As the reaction 
rate is very slightly decreased, the reaction 
zone remains of E* thickness in order of magni- 
tude, but is slightly increased in width (cf. 
Equations (20) and (22)). The increase is 
just enough to react some of the fuel that to 
lowest order escaped combustion at a given 
radial position. Of course, thickening the reac- 
tion zone for other than very small E would have a 
detrimental effect on the vaporization rate. For 
L > 1, decreasing the reaction rate is harmful to 
the vaporization rate ; ti is found by equation (23) 
to decrease as E increases. 

Finally, it is noted that adopting ti* - a* 
implies for a first-order reaction that the gas- 
phase mass fraction YF vanishes as D;* as 
D1 + cc-this is indicative of singular behavior.? 

For the riz* - u*’ solution one adopts 

YF(r, e) = y,,(P) + e%&) + M) (24) 

ti(&) = &%il~ + ti, + o(1) (25) 

Dimensionally equation (25) states that 
ti* - ~*~(kf*)*; this relation, found by Williams 
[3] after extensive approximations, is here an 

t If T,* is set equal to T:, the results for tiO and Y,, 
hold for the transcendentally nonlinear Arrhenius kinetics 
as well. However, while Y,, and hit, could also be found 
in such a case, the expressions would be far more complex 
than those given in equations (22) and (23). 
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immediate result of simple dimensional argu- 
ments. In contrast to equations (17) and (18) 
the vaporization rate now becomes large without 
bonds as equilibrium, irreversible conditions are 
approached. This is indicative of singular 
behavior in this alternative expansion. Further- 
more, the mass fraction abruptly changes from 
an order-unity quantity to an exponentially 
small one as the flame zone (of thickness 
O(&) as E + 0) collapses. In the limit the flame 
zone is analogous to the vortex sheet to which a 
viscous boundary layer collapses as the Reynolds 
number becomes unboundedly large. Whereas 
the tangential velocity discontinuously jumps to 
zero across the vortex sheet, across the flame 
sheet in the E + 0 limit the fuel mass fraction 
discontinuously jumps to zero. 

compared with the heat generation by reaction 
and absorbed by vaporization. From equations 
(26) and (27) 

Y,,(p) = (1 - L) exp t [l - (1 + 4/ri?g)+]p 
1‘ 1 

where 

1-L 
fi, = - 

fi . . 

Substitution of equations (24) and (25) in 
equations (15) and (16) yields with the aid of 
equations (9)-(12) the following problem to 
lowest order (identical to the analogous one- 
dimensional problem) : 

For rfr,, > 0, 0 < L < l-the specific heat of 
combustion must be greater than the heat of 
vaporization. It has formally been shown that the 
case rir* N a*’ implies that the temperature 
rises to the adiabatic flame temperatures in a 
distance roughly E* off the droplet, and main- 
tains the adiabatic flame temperature until 
distances O(E- *). 

The first perturbation to equations (28) and 
(29) is governed by 

2 

d2Y,, . dY,, 
. G-1 

--m --YFo=O 
dP2 ’ dP 

(26) 3 - m 
-- 

’ dP 

(28) 

subject to 

Y,,(O) = 1 - L,? 

= fizOIYF”(0) - 11, r,,(P + a) + 0. (27) 

From this formulation it is clear that L < 1 [so 
Y,,(O) > 01, or no solution of the type postulated 
can exist. Physically, unless the heat of vaporiza- 
tion is less than the heat of combustion, no 
intense vaporization can be expected. Since 
T, and T, do not enter the formulation (except 
to characterize the magnitude of b,), the vapori- 
zation rate becomes relatively independent of 
these quantities ; li? is a function of L only. The 
dependence on L and independence of T, and T, 
is in direct contrast to the model of Spalding and 
Jain, as interpreted by Williams [l]. In cases of 
intense vaporization the roles of impressed 
thermal gradients of moderate magnitude have 
negligible effect (according to the current model) 

where 

dY,,(O) 
~ = - Lh,, Y,,(O) = 0, 

dp 
YF1@ + co) + 0. (31) 

Consideration of this boundary-value problem 
reveals that rir, > O-thus again it is found that 
the vaporization rate for indefinitely fast, irrever- 
sible kinetics is not the maximum rate possible. 
Substitution of equation (28) in equation (30) 
gives in view of (31) 

YF, = WP + JP2) 

exp r ? [l - (1 + 4/ti;)+]p 
1 

(32) 

t If the Arrhenius factor had been retained, even the 
lowest-order solution would have been intractable because 
of the nonlinearities. However, one can show that while 
t&, might depend on T, in such a case, & remains indepen- 
dent of T,. 
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where 

_J = (1 - L)2Lt 
l+L 

(33) 

H= L(Z) ($ -&-) (34) 

?il,=2 +$. 
( ) 

(35) 

Thus as E + 0 either ti* - a* or ti* N a*2 
seems to be compatible with an asymptotic 
expansion that is both physically plausible and 
capable of extension to higher order. The only 
satisfactory stability analysis would be to 
ascertain what physically realizable initial con- 
ditions (if any) would lead to each of the two 
quasi-steady configurations; this quite difficult 
unsteady analysis will not be undertaken here. 

5. COMPARISON WITH EXPERIMENTS 

AND SUGGESTED EXTENSIONS 

For the first-order reaction examined in this 
paper one may conclude the following. 

(1) A quasi-steady solution theoretically exists - 
for D1 + co in which rir* - a* provided 
Tf > T*, when L < 1. Barr&e and Moutel [l] 
are the only experimentalists to report riz* - a* 
for other than b, + 0, but their results have been 
challenged on several grounds [S]. Most experi- 
mentalists find it necessary to introduce an 
oxidant into the environment to sustain the 
quasi-steady monopropellant burning [14]. The 
oxidant is chemically active with the products of 
the decompositional burning so a bipropellant 
flame [15] exists outside the monopropellant 
flame. Naturally the current theory for an inert 
atmosphere cannot be rigorously applied to such 
an experiment. Naturally, also, the hot bi- 
propellant flame violates the condition 
T: > T*,. Since spherical droplets can be 
achieved to only a certain size, physical realiza- 
tion of the 6, % 1 condition would require a 
very large porous sphere with baffles to inhibit 
internal circulation currents ; the gaseous atmo- 
sphere would have to be held at a high pressure. 

Perhaps the lit* - a* result, which has never 
been experimentally observed in the near- 
equilibrium limit, might then be noted. 

(2) A quasi-steady solution theoretically exists - 
for D, + co in which ti* - a*2 provided 
L < 1. This solution for rir (equations (25), (29), 
and (35)) indicates ti depends more on L than 
on T, and T, Many experimentalists report 
Gr* - a*’ for b, of order unity or larger. Some 
caution is warranted when applying the current 
theory to these experiments. Again, these experi- 
mentalists often resort to oxidant-containing 
ambient environments. Furthermore, often they 
use simple (“eyeball”) judgements as to when a 
quasi-steady state was established [7]. It should 
be noted that in the experiments of Faeth, 
Karhan and Yanyecic [5] with actual droplets 
the quasi-steady state took longer and longer 
to achieve as D1 was increased. During the 
short time it was achieved for large D1, ti - a*2 
was observed. Sometimes it appears virtually 
no quasi-steady combustion was realized before 
burnout. Failure to attain in all cases a quasi- 
steady burning is confirmed by Lawver [14], 
who also used droplets. 

(3) If one wishes to maximize riz, there is some- 
times little incentive for as large a forward rate as 
possible (while suppressing the reverse reaction) 
for quasi-steady burning of monopropellants, 
because i is not necessarily a maximum for - 
D, + co. 

(4) The monopropellant flames for D1 + cc 
lies contiguous to the droplet and is of thickness 
O(D; *). There seems just as great a need as ever 
for a theory of sequential monopropellant and 
bipropellant flames-a need previously empha- 
sized by Williams [l] in discussing decomposi- 
tional burning in the presence of species chemi- 
cally active with the product gases. 

Finally it is conjectured that the difficulty of 
establishing quasi-steady purely decomposi- 
tional flame in constantdiameter porous-sphere 
experiments at any finite Damkohler number 
may be owing to a failure to preheat the liquid 
fuel to its boiling temperature. Provision for pre- 
heating is not quoted in the apparatus diagram of 



230 FRANCIS FENDELL 

[7] ; such an omission would render the experi- 
ment completely unsuited for the quasi-steady 
theory with adiabatic vaporization which the 
authors of [7] themselves present. If the liquid 
were preheated before introduction into the 
porous sphere, the present conjecture is that a 
decompositional flame would be sustained for 
some finite Damkohler numbers. 
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R&m&-La formulation classique de la combustion quasi-stationnaire a symetrie radiale d’une gouttelette 
spherique de monergol pur est reexamined pour un nombre de Lewis-Semenov &gal a l’unitt. La gouttelette 
subit une vaporisation adiabatique et une combustion de decomposition du premier ordre irreversible, 
en une &ape, directe et exothermique. La limite singuliere p&s de l’tquilibre est examin&e par l’analyse 
asymptotique et l’on a chercht la dbpendance de la vitesse de vaporisation sur le premier nombre de 
Damkijhler lorsque ce nombre croit indefiniment. Dans la limite pres de l’tquilibre, la flamme est conflnee 
dans une enveloppe spherique voisine de la gouttelette. Lorsque le nombre de Damkiihler crolt sans 
limite, un certain travail experimental et theoretique a signale que la vitesse de vaporisation est proportionn- 
elle au carrt du rayon de la gouttelette, tandis qu’un autre a suggere que la vitesse de vaporisation est 
proportionnelle au rayon de la gouttelette. Alors qu’une telle non-unicitt n’existe pas pour une formulation 
unidimensionnelle plane de la combustion par decomposition, le problbme tridimensionnel de la goutte 
permet une solution non unique. Les conditions necessaires pour realiser chacune des dependances de la 
vitesse de vaporisation en fonction du rayon de la gouttelette sont exposees. Ces deux dependances prMisent 
que le maximum de la vitesse de vaporisation ne se produit pas a l’equilibre chimique (en contraste avec 
les gouttelettes de diergol). En outre, en contradiction avec un travail prudent, l’analyse actuelle indique 
que pour une vitesse de vaporisation proportionnelle au carrt du rayon de la gouttelette, le rapport de la 
chaleur specilique de vaporisation a la chaleur spkifique de combustion est important, mais non les 
enthalpies mises sans dimensions de la gouttelette ou de l’ambiance. La stabilitt de chaque dependance 
du rayon de la gouttelette est examit& en pensant a un appareil a sphere poreuse de diambtre constant, et 

les resultats semblent &re compatibles avec toutes les observations experimentales publi&es. 
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Zwenfm-Der konventionelle Ansatz f”ar quasi-statiotire radialsymmetrische Verbrennung 
eines reinen kugelt%rmigen Triipfchens eines Einkomponententreibstoffs wurde ftir eine Lewis-Semenov- 
Zahl 1 von neuem untersucht. Das Triipfchen erf&hrt eine adiabate Verdampfung und eine exotherme 
direkte, in einem Schritt erfolgende, irreversible Abbrandreaktion erster Ordnung. Der besondere Grenz- 
bereich in der N&he des Gleichgewichts wurde mit einer asymptotischen Theorie untersucht, und es wurde 
die Abhiingigkeit der Verdampfungsrate von der ersten Damkiihler-Zahl gesucht, wenn diese Zahl 
unendlich gross wird. Im Grenzbereich in der N&he des Gleichgewichts ist die Flamme auf eine schmale 
Kugelschale, die an das Triipfchen angrenzt, beschrankt. Fur den Fall, dass die erste Damkiihler-Zahl 
unbegrenzt gross wird, wurde einerseits in einer experimentellen und theoretischen Arbeit berichtet, dass 
die Verdampfungsrate proportional dem Quadrat des Tropfenradius ist, wogegen in emer anderen Arbeit 
angenommen war, dass die Verdampfungsrate direkt proportional dem Tropfenradius ist WHhrend fur 
den ebenen eindimensionalen Ansatz der Abbrandreaktion derartige Widersprtiche nicht auftreten, l&t 
das Problem des dreidimensionalen Trbpfchens eine nicht eindeutige Lijsung zu. Es sind die notwendigen 
Bedingungen fiir die Verwirklichung jedes der beiden Gesetze fur die Abh;ingigkeit der Verdampfungsrate 
vom Tropfeuradius dargestellt Beide Abhiingigkeitsgesetze sagen voraus, dass die maximale Verdampfungs- 
rate nicht beim chemischen Gleichgewicht auftritt (im Gegensatzzu den Tropfchen eines Zweikomponenten- 
treibstoffs). Weiterhin zeigt -im Gegensatz zu friiheren Arbeiten- die gebrluchliche Analyse, dass dann, 
wenn die Verdampfungsrate proportional dem Quadrat des Radius ist, das Verhlltnis von spezifischer 
Verdampfungswarme zur spezifischen Verbrennungswlrme von Bedeutung ist, und nicht die dimensions- 
10s gemachten Tropfen, oder Umgebungsenthalpien. Die Stabilit&t der beiden AbhSingigkeitsgesetze vom 
Tropfenradius wurde mit einem konstanten Durchmesser mit Berticksichtigung des Mechanismus einer 
porosen Kugel tiberprtift und die Ergebnisse erscheinen mit allen dargelegten experimentellen Beo- 

bachtungen vertriiglich. 

_hlOT~I&WI-PaCCMaTpUBaeTCH o6nsBan ~OpMJWipOBKa YCTaHOBUBIUerOCR pa@aJlbHO- 

CuMMeTpUYHOrO rOpeHuH YUCTO C+epWIeCKOfi O~HOKOMllOHeHTHOt KaIIJIU.QJIH '4UCJIa nbIOuCa- 

CeMeHosa, pamoro enmmue. Hanm no~sepraew3 a@abaTUveCKOMy UcnapeHUm II He- 

IIOCpeJJCTBeHHOMy 3K30TepMWIeCKOMJ' OAHOCTyIIeHqaTOMJ' HeObpaTuMOMy rOpeHUIO. KBa3U- 

~aBHOBeCHbI~BpO~eCCUCC~e~~eTC~CBOMO~b~aCUMUTOTIl~eCKUXMeTO~OB.Hatl~eHa3aB~CU- 

MOCTb UHTeHCUBHOCTU UCIlapeHUX OT WfCJIa aaMK&Iepa, KOrAa OH0 CTaHOBUTCR 6eCKOHeqHO 

bOnbIU&lM. B KBa3U-paBHOBeCHOM IIpOlleCCe IIJIaMH OPpaHWZUBaeTCFI J'3K08 C+epUqeCKOt 

ObOJIOYKOt, IIpUJIeraIOrrleti K KaIIJIe. COWIaCHO 3KCIIepUMeHTaJLbHbIM U TeOpeTU'IeCKUM 

HaHHbIM BpU6o~b~llx~UC~aX~aMK&~epaCKOpOCTbllCBapeHUFIBpOBOp~UOHa~bHaKBa~paTy 

paanyca riarrnn. OAHaKO, B Apyr”x pa6oTax npeAnonaraeTcn, YTO CHOpOCTb Ucnapemrr 

JIUHetiHO IlpOlIOplJUOHaJlbHa paAUYCy KaUJIU. EcnU HeT TaKOt HeOAH03Ha'IHOCTU AJlB IIJIOC- 

KOI'O OAHOMepHOI'O FOpeHUFl B J'CJIOBURX pa3JIO?KeHUH, TO TpeXMepHJ'IO 3aAaqJ' gJIH KallJlH 

MOmHOpeIUUTb HeOAH03Ha9HO. B pa6oTe aHaJIU3UpyIOTCB3aBUcUMocTU cKO~OCTU UcnapeHm 

OTpaAUYCa KaIIJIU.Obe 3aBUCUMOCTU IIpeACKa3bIBaIOT,qTO MaKCUManbHaH CKOpOCTb UCIIape- 

HUH He HabJIIOAaeTCJI IIpU XUMUYeCKOM paBHOBeCUU (B IIpOTUBOIIOJIOH(HOCTb CJlJ'qaIO ABYX- 

KOMUOHeHTHbIX KaneJIb). HacToalqUB aHaJIU3 IIOKaabIBaeT, 'i~o ASH CKOPOCTU UcnapeHufx, 

llpOIlOp~UOHaJlbHO# KBaApaTy paAUJ'Ca KaIIJlU, BaWHbIM @aKTOpOM RBJIHeTCJl OTHOBIeHUe 

yAeJIbHO~Te~~OTbI UCIIapeHUR K J'AeJIbHOt TeIIJIOTe rOpeHUR,a He be3pa3MepHaH 3HTaJIbIIUH 

KarIJIUUJIU COCTOFlHUeOKpyH(alO~eZtCpe~bI.~KCIIepUMeHTbIIlpOBO~UJIUCb C KaIIJIHMUOAUHa- 

KOBOrO AUaMeTpa npU llpO=iUX paBHbIX YCJIOBUFIX. Pe3j'JlbTaTbI UCCJleAOBaHUR CONIaCyIOTCH 

C OIIybJIUKOBaHHbIMU 3KCIlepUMeHTaJlbHblMU AaHHblMU. 


